Thursday, 15 October 2015

Geometry and Music

Not such strange bedfellows. Many artists (Klee, Kandinsky, for example) have found music to be a major influence. Some have found geometry to be accommodating.  Both music and geometry have aspects of systematic thinking that are compelling.

The regularity of the form of a musical composition is what makes it such a good bedfellow for geometry. When written traditionally, music has horizontal form, it's rhythm and vertical form, it's melody. Composers create symmetry in both these dimensions, by repetition and transposition.

The serialists that followed Schoenberg (a hundred years ago!) formalised the creation of musical patterns in both these dimensions by introducing geometrically-influenced transformations on musical phrases. These included reversing and inverting phrases as well as cropping and recombining them to form new phrases.

These transformations on musical phrases are the same transformations that we use in geometric art to generate, for example, patterned wallpaper.

Schoenberg's methods were presented as part of the 12 tone system, for which they were a very good fit. Maybe they would never have been exploited at that time, if it wasn't for Schoenberg's desire to get away from conventional tonality. However, the methods apply equally to tonal music as many contemporary composers have demonstrated.

My interest in music extends my abiding interest in geometry because of its equal treatment of time and space (in the form of intervals). Music is formalised (whether using common western notation or the many historical alternatives) as a consequence of its need to be performed by someone other than the composer.

But it is the fact that it is notated at all that interests me most. Surely, I must be able to take some of those notational devices into geometry and in particular into geometric art.

Transformations in space and time to create symmetries that combine music and geometry is an elusive target at the moment but the correspondences I have noted here seem to be a promising avenue.